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THE WE OF IIJM TWST FOR DRAG REDIXY!l?IONON MtROll

WINGS WITH StESONIC LIMDING EIXIES

W ltrederickC. Grant

SUWARY

Linearized-theory calculations of the drag reduction achieved by
applying the first three terms of a power series for twist to flat delta
wings sre presented. = addition, the reductions due to applying linear
twist to a fsmily of flat arrow wings me presented. The results cover
the speed rsnge of subsonic leading edges.

The results show a 6-percent drag reduction due to twisting a flat
delta wing with sonic leading edges and a steady decrease in the gains
as sweepback increases.

For the fsmily of ltiesrly twisted srrow wings tivestigated (that
with sonic trailing edges), the maximum drsg reduction is 2 percent h
the medium sweepback range with a steady diminution in both directions.
A beneficial effect of increasing aspect ratio obscures the twist effects
in this case. The convergence to the optimum-power-series twist appears
to be rapid.

INTRODUCTION

Numerous examples of drag reduction by WSZ’PiW sweptback supersonic
wings have been calculated. (For example, see refs. 1 to 3.) b a recent
paper (ref. 4), as many as 10 types of loading have been combined on a
delta wing ticluding power-series twist terms. h the present paper two
cases of an srrow-wing plan form subjected to pure twist (spanWise slope
variation) sre considered. The twist is applied symmetrically from the
root as a power of the distance from the root. Powers up to three are
considered for a delta plan form. For an snow plan form tith sonic
trailing edges the effects of linear twist are shown.

The Lagrange method of reference 3 is used to compute both the
optimum twist and the drag decrease over a flat wing for a given total
lift. Leading-edge thrust is incltied in the tisg calculations.
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SYMBOLS ~.

proportionality constsnt t

psxsmeters defining pressure distribution

drag coefficient

interference drag coefficient excluding leading-edge
thrust

—
.-

interference dreg coefficient of leading-edge thrust

interference drag coefficient including leading-edge
thrust

---
.-

UEt coefficient of a ~.with ith power twist

lift coefficient of a combination of twisted wings

psxt of lift ~oefficient due to ith-power component
W- When CL = 1

lifting pressure coefficient (pressure on the lower
surface minus pressure on the upper suxface, divided - -
by free-stream dynamic pressure)

complete elliptic integral of second kind with modulus k

complete elliptic integral of first kind with modulus k

speed-sweepbackparsmeter (see fig. 1)

free-stresm Mach number

tangent of semiapex angle (see fig. 1)

wing area

basic variables of genera~ed conical flow
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X,y,z

a

Subscripts:

f

t

T

free-stresm velocity

velocity of flow normal to leadlmg edge, near leading
edge

velocity of flow in z-direction

right-handed Csrtesian coordinate system (see fig. 1)

local angle of attack

flat-pkte drag coefficient minus optimum drag coefficient

root chord of arrow wing (see fig. 1)

velocity potential

flat

power of twist vsxiation

dummy 5ndex or root

tip

plm form

ANALZSIs

Pressure Computation

For a wing subjected to a symmetrical pure twist which varies as a
power of the cllstancefrom the root (fig. 1), the downwash vsriation is

w-= -S.-j]yli
v

( la)

By introducing the vsriable rI= pY/x, eq_uatiOn(la) becomes .-

(lb)
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The downwash variation (eq. (lb)) is of the type treated in references ~
and 6, and the general formula for the pressure distribution is given iii

?

appendix A. If- i is no greater than ~, the lifting
cient is

pressure cGeffi-
*.-
—

(e= j3Y/x) (2)

The coefficients bir in equation (2) can be determined from the fol-

lowing matrix equation:

CB=A (3)

A general .caseof equation (3) is discussed h appendix A. For the case .
at hand, for linesx twist,

1(-1,2,0) 1(-1,2,2’

11(0,2,0) 1(0,2,2)

for quadratic twist,

c2=h3’o)1(-1’3’2)1
1(1,3,0) 1(1,3,2) I
L -1

B. =
L

B2 =

.-

blo

bU
--

1

b20

b22
1

Al =

%=

o

.

(ka)

(4b)

9

.
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snd for cubic twist,

1(-1,~,0) 1(-1,4,2) 1(-1,4,4)

1(0,4,0) 1(0,4,2) 1(0,4,4) B5 =

L(I 2,4,0) 1(2,4,2) 1(2,4,4)
J

b30

b32

b%

24
-—a

B“

A3 = o

0

(4C)

The I(a,b,c) functions of equations (4) are evaluated (appendix A)
from the following relations:

a I(a,b,c)I(a+l,b+l,c) = (C - b - l)I(a,b,c) - eo —
aeo

(5a)

I(a-b,O,c) = ~a-b+c - Ja_b+c+2 (5b)

J’
00 tndt

J_n=

‘ P-

If, for convenience, the following new vsriables me introduced:

i=eo

*.:

cqt = aimi

~(l+i-r) bti

‘ir = 4mai( i: )
I

(5C)
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equation (2) may be rewritten as fo~ows: ●

By
of

as

Pio + ‘.J2@ + ‘i4#
Cp,i = 4ma.Jt(i!)xi

~’

evaluating the elements of equations (4) sntisubstituting in terms
the new variables (eqs. (6)), the coefficients fij are obtained

given in table I.

Drag Computation—

Integration over the plan form yields the following equations for
normalized lift and interferencehag coefficients (hnnit(i!) = 1):

(9)

It is understoodfi equations (8) and (9) that only even values of r a
occur.

.
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The interference drag given by equation (9) does not include leading-
thrust which is calculated separately in appendix ~ where it is

shown that

()IllcD,~j T = - X i=,io+,i, +,)p ,,,2+,,,) (,0)

4(1-v) i+j+2 ( i4 jO .—

T;dm;,l interference drag may be writte~ as the sumof eqgations (9)

m-~,ij
()

= mCD,ij + m ~D,ij T (U)

60,ij
~slculated values of the drag-lift coefficients

‘iJ= ~,iCL,J

derived from equations (8) to (n) me given in table II. The quanti-
ties Cij smd the analysis given in reference 3 allow the calculation

of the optimum partition of a given lift among the twisted wings of this
report for lesst drag of the combtiation. The optimum psrtitions of a
unit lift coefficient among the twisted wings of this report, as well as
the drag of these pmtitions, axe calctiated by the method of reference 3
and me given in table III.

RESULTS

Delta Wings

The total drs& of the optimun twisted delta wings, together with
the total dreg of the component loadings taken alone, is shown in fig-
ure 2(a); all are at unit lift coefficient. Unit lift coefficient on
the twisted wings taken alone is attained by increasizugthe tip angle
of attack ~t, the root angle of attack remaining zero. These values

all include leading-edge thrust. A lower bound for the &ag calculated
as in reference 7 is shown for compsrison. It is pointed out in ref-
erence 4 that this bound is a poor approximation to the minimu in the
lower sweepback range.

The small overall improvement in delta-wing drag level indicated
by fQure 2(a) is made by lowering the flat-plate wave drag at the

.
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e~ense of increasing the vortex drag. The vortex drag is a minimum for .

the flat delta wing and is equal to the total drag at ~ = 0. The net
result of this process in shown b figure 2(b) for a wing with optimum
linear twist, as well as for the wing with optimum ccmibinedlinear, quad- 9
ratic, aud cubic twist which is plotted h figure 2(a). Figure 2(b)
shows that the greater part of the small gains obtained are contributed
by the linear twist throughout the speed r&ge. Thi~ indicates a rapid
convergence to the opthum-power-series twist. At k= 1.0 the sti
additional csmbered surfaces combined with the flat delta wing in ref-
erence 4 gave about ,mother 4-percent reduction in the total drag, or .-

a total of newly 10 percent.

Arrow Wings
.

Figure 3 is analogous to figure 2, except that ti figure 3 only
linear twist is combined with the flat plate. The fsmily of srrow wings
considered in figure 3 have sonic trailing edges.

●

Figure 3(a) indicates that the possible g~ins due to twist sre small.
The increase in aspect ratio with increasing k has a beneficial effect
in reducing the total drag which obscures the effect of the twist. The

.

small twist effect is shown more clearly in figure 3(b) with a maximum
drag reduction of 2 percent.

Optimum Settihgs

Figure 4 shows the settings required on linearly twisted wings for
msxbnw.udrag reduction; ~ is the angle of attack required for unit

lift coefficient on a flat wing, whereas ~ and ~ are the root and

tip angles of attack on the wing with optimum hew
lift coefficient.

If a 600 delta wing at M =

()

~ ~=$ and a

0.2 are considered, figure 4(a) indicates that about
reauired. The tix reducti~ Of 264 perc~t ~ this

twist, 00 at unit

lift coefficient of

2° of washout iS
example comp~es with

3.~-percent hag reduction that could have been obtained M quadratic and
cubic twist had been included (fig. 2(b)).

CONCLUDING REMARKS

●

Calculations of the msxinnm drsg reduction achieved by applying the
first three terms of a power series for twist have shown that the drag of -1

.—
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flat delta wings with sonic leading edges can be reduced approximately
6 percent. The possible gatis steadily diminish as sweepback is tncreased.
Similar drag-reduction calculations for a family of ltiearly twisted arrow
wings with sonic trailing edges show a maximum drag reduction of about
2 percent in the medium sweepbwk range with steadily decreasing gains in

—

both directions. In this case, however, the beneficia effects of high
aspect ratio obscure the effects of twist in the lower sweepback range.
The convergence to the optimum-power-series twist appesrs to be rapid.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Vs., June 13, 1957.

.
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APP~IX A

GENERAL FORMULAS FOR PRESSURE DISTRIBUTIONS

GeneraMzed Conical Wings

For downwash distributions of the rather general type

()q=fix
x

(Al)

where Pi is a polynomial of degree i, Heaslet and lhuax in refer-
ences 5 tid 6 have derived the lifting pressure coefficient

Cp,i = [~j Lo ~~~

O.-e

for the case of symmetrical
cients bfr are determined

Equating coefficients of q
i + 1 linear relations for
terms of the polynomial Pi

.

sweepback. (See fig. 1.) The coeffi-
in reference 6 by the following equation:

(A2)
.

(A3)

on both sides of equation (A3) yields
bir. Since solutions we additive, single
will be considered separately.

is of concise and elegant form, it is notAlthough equation (A3)
one suitable for calculations or convenient for discussion of solutions.
In order to start a systematic reduction of the finite-part integrals of
equation (A3), the following notation is introduced:

I(a,b,c) = $’0 tav(:$+..
- eo2

a

(A4)

+—
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The derivative in the integrand of equation (A4) is a homogeneous
function of degree c - b
for homogeneous functions

‘(J’+’&+‘0
- 1. For this derivative, Euler’s relation
is

()a-a b tc——

a’”at/==7
(A5)

Multiplying equation (A5) by tail - t’ and integrating yields

I(a+l,b+l,c) = (c -b - l)I(a,b,c) - eo ~I(a,b,c)
aeo

(A6)

From equation (A6) it is plain that any I(a,b,c) canbe derived
by b applications of equation (A6) to

I(a-b,O,c) = Ja-bW - Ja-bW~

where

In these equations Jn is, in general, an elMptic
in reference 8 satisfies the following relation:

(A8)

integral and as shown

(n +l)Jn+2 - n(l +#)Jn + (n - l)@’Jn-2 = O (A9)

For n near zero, Jn m.sybe readily put in a standard form. Any other
Jn may be derived by using equation (A9). For n near zero:
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.

?

(Ale)

iwhere the modulus of K and of E is equal to 1 - $. Inspection of
equation (A9) shows that Jn is a homogeneous linesr function of E

and K for even values of n. For cdd values of n, Jn is a rational

function of li. Since the derivatives of E and K

.

.

are also homogeneous linesr functions of K and E, then I(a,b,c) is
a homogeneous linear function of K snd E, when a - b i.c i.seven.

=
If Pi = ai~i, then a linear set of equations for bir may be

written ‘asfollows: #

i+l )

.%=_& I birI(-l,ii-l,r).
.

r=O

I
(A12a)

i+l

o = zbirI(j,i+l,r) (J=0,1,2,...,i-1]
--

r=O
m

.
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or in matrix form as

13

1(-1,i+l,O) 1(-l,i+l,l) ...
1

1(=1,i+l,i+l)

1(0,i+l,O) 1(0,i+l,l) ... 1(0,i+l,i+l)

. . . . . .

. . . . . .

. . . . . .

I(i-l,i+l,O) I(i-l,i+l,l) ...
J

I(i-l,ii-l,i+l)

which may also be written as

CB=A

o

.

.

.

0

lw+4 (A12b)

(Am)

Since the single term under consideration is an odd or even function
as i is odd or even, the pressure must be an odd or even function
with i. Thus, every other element of the B matrix must be zero. The
first element is zero when i is &id; the second element is zero when i
is even. Consider now the C! matrix. Equations (A7), (A9), and (AIO)
show that, for odd values of p = a - % + c, I(a-b,O,c) is a polynomial

in ~ for p <0 and a polynomial in eO for p >0. The polynomial
80

degrees sre -p for p <O and p + 1 for p >0. When the recursion
formula (A@ is applied i + 1 times to I(j-i,O,r), in every row except
the first, the value of I is zero when p is odd. Thus, every other
I is identically zero, except in the first row. When p is even, I is,

in general, not zero.

If the solutions of equations (AX?) me now considered, every other
equation, excluding the first, di.sappesrs. This means that for odd i
md odd downwash or for even i and even downwash the nuniberof variables
and equations is the same ad a unique solution exists. Reference 5
points out that the form of the pressure solution (eq. (A2)) is Unchsmgd
if the natural sign of the downwash polynomial is required to change
for ~ <O. With respect to equations (A12), even solutions may be
obtained from odd i, or odd solutions from even i, by reversing the
natural choice of ZerO bir in the B matrix. Again considering equa- .
tions (AM), for W i and even downwash or for even i and odd down-
wash, it is found that the nuniberof variables and equations is again
the same and a unique solution again exists.
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or

For a polynomial term of degree v < i, the linear equations are .

i-l-l

o=
I

birI(j,i+l,r)

1“

(j=-l)o,...i-v-2,i-v,● .i-l) t

Y=o
(A1.3a)

i+l
P.1av=—
4 (i - V)!v!

(-l)i-v
I

birI(i-v-l,i+l,r)

r=o

as before

C!B=A

where C and B are unchanged, but
r 1

0
0 I

I ●. I
o

A=
~a(i-v)!v!
Pv

o
.

. .

.

(A13c)

L ; J
For v < i, there is again a unique solution.for eagh v.-but it is not
possible to demand odd solutions for even v_ or even solutions for””o~- vi ‘—
Such a demand sets to zero the right-hand side of equation (A13a) and
there are no solutions.

-.

The underlying reason that the present_malysis will not yield solu-
tions in every case is that the vth and succeeding derivatives of the
downwash terms with forced sign reversals have singularities at the acigin
which must be accounted for in the inversi~ of qn inte~al equation.
This was pointed out in reference 9 by Kafka, who shows that a logsxithmic
singularity in the pressure at q = O is reqtired to produce the required
downwash. Therefore the solution to eqtititi (A2) Is incomplete when

.

V<i. In order to include sJ2.cases, expressions analogous to equa- “- “- = ‘-.
tions (A6), (A7), and (A8) may be derived by an analysis similar to that
given, @ the coefficients of the logarithmic terms may be determined.

●

.

.
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Twisted Wings

The downwash variation for a symmetrically twisted wing is

()p‘w
-= -+lliZV

snd this case is treated by equations (AM) . For Ilnear twist

CIB1 = Al

where

[

1(-1,2,0)

c1 =

11(0,2,0)
1(-1,2,2)

1(0,2,2)

1

Use of equations (A6), (A7), (A9), and (AIO) yields

1(-1,2,0) = - ~
%3

1(-1,2,2) = - ;

K-E
1(0,2,0)= -

1- $

1(0,2,2) =
#K-E

1 -$

In a similar manner, for qusdratic twist

C2B2 = ~

>

Al .

(A14) “

(~sa)

4

.1

-—al
P

o

(Al>)

(JU6)
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and

r

1.
1(-1,3,0)

C2 =

I(~,3,0) 11(-U3,2)

1(1,3,2) !].b20
B2 =

bw
%=

where

1(-1,3,0) = ( -, (-4 + # - #)E + 2i# - 4#)K

$k4

1

1(1,3,0) = (4 -a :(-3 -f-~)K
~4

1(1,3;2) =
(1 +f)E - 2A

~4

(-6 + 10# - 2+)E + (3$ ~+)K
1(-1,3,2) s

#k4

‘!

And for cubic twist

C3B3 3=A

and

CT =

--

1(-1,4,0) 1(-1,4,2) 1(-1,4,4

1(0,4,0) 1(0,4,2) 1(0,4,4)

1(2,4,0) 1(2,4,2) 1(2,4,4)

133.

~30

b32

b34

A3 =

1

+2
o

J
(Alp)

(Q8)

(Alga)

24ax
p.

o

0

.

.

.

-

●

.

(Algb)

.
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where

1(-1,4,0) = - =
*$

I

1(-1,4,2) = - @
$

t

1(-1,4,4) = - +
k 1

17

(MO)
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APPENDIX B

CAICWLATION OF LEADING-EDGE TH?WST

In ofier to sustain a finite dowmwash at the subsonic leading edge
of a wing, an infinite discontinuity in the pressure is required at the
edge. Such an edge experiences a suction force which depends on the
nature of the pressure singularity (ref. 6). When the singularity in
velocity

the drag

In these

from the

—
norn& to-the lea~ng e~e”has the form

Vn Gn 1
—= ——
v

VZ”.

coefficient due to suction is given as follows:

J
G: d

CD=-* —Y
span %

(m)

.?

—
.

(B2)
.

equations, Gn is a constant, ~ is the perpendicular distance

leading edge, and P= =~~.here ~.hin/{~2. For ‘-

the twisted wings of this paper (setting 4m(i!)~t = 1) [..

.#&#i=xi fio +f@12+’fil#cp,i
/=7

Integration of equation (B3) from the leading edge in the manner of
reference 6 yie~s

where :

~ ?i = ‘iOai+l + a2fi2ai-1.+a4fi4ui-3

(B3)

—-.

(B4)

.
.
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Since the following relatia holds:

ar = Xr-’= , r -1 ~2a
r r r-2

any ar csn be reduced finally to the case r=lorr=O=

Performing this reduction in equation (Ilk)and differentiating with

. respect to ~ gives

where

5 = tan-h

Stistitution of equation (B~) into equation

4

(B2) yields

19

(B5)

(E@

In the superposition

and the interference

Of tWO SOIUtiOIIS, Vn = Vn,i + Vn,j in equation (B5)

drag iS givenby

[ -$
(1 - P)m(CD,ij)T = - ~ i ~ j + 2

( )(
fio + fia + fi4 fjo+fj2 +f54)

Equation (B7) is easily extended
of twist by adding values of f

for quartic, quintic, and
inside the parentheses as

(B7) “

higher de~ees
required.

.
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!IMJ3LEI

VALUES OF fij FOR TWISTED WINGS

E f~ f10 f~ f20 f= f= f32 f34

I 1 0.63662 0 0.25000 0 0.07074 0 0

.2 “95193 .34453 ● 04604 ● 18650 .04215 .04524 .Olgao .~D5

.4 .86907 .42435 .10613 .W2’n .ci3350 .02463 .03253 .00103

.6 .78348 .33026 .15318 .08282 .10773 .01480 ● 03700 .00248

.8 .70518 .26189 .18736 . og22 .12080 . 0q124 .03766 .00423

,.0 .63662 .21221 .21221 .04244 . lZ’j’32 .00@6 .03638 .00606
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E

o

.2

.4

.6

.8

1.0

O. 15$?2

.1784

.2204

.2790

.3559

.5CKE3

mm m 4104

TABLE II -

DTTEF@’ERENCEDRAG-LIFT COEF7?ICJ3?JW!SFOR~1.STEllWINGS

sol

0.1392

.1834

.2333

.3W

.3900

.56!33

[Rl=l]

(a)Deltawings, w = O

~oa ~03

0.1592 0.1592

.187z .1900

.2422 .2503

.3167 .3301

.k170 .4407

.6250 .67kk

Eu
I ~12

o .li’go 0.1910

.2171 .2417

..2926 .3388

.~32 .M72

●5259 .6370

●79% .9834

~13

0.1989

.261.3

.3792

.5286

.7291

1.1399

E=

0.2122

.2848

.4213

●5993

.8322

1.3003

(b)Arrowwings, v = k

I E em I ’01 %1 1

~23

0.2274

.3215

.4965

.7147

1.cKn4

1.5746

0 0.1592 0.l’j92 0.1790

.2 .1421 .1483 .ti92

.4 .1353 .1467 , .2104

.6 .1259 .1383 .2123

.8 .1022 .1116 .1744

1.0 0 0 0

’33

0.2@7

.3744

.60~

.88kl

1.24~

1.9662

e

.

.

*

b

.
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.

(a)Delta* withO,1,2,W 3rddegree twist
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(a) Drag coefficients.
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(b) bag hprovement over flat wing at optimum twi6t.

Figure 2.- Drag characteristics of twisted delta wings. m =~L=~;

K=o.
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(a) Delta wings. P = O.

Figure 4.- Opttiw inciden~e mgles on linearly twisted wings.
m = CL = CL,f = 1.
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